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GAUSS PERIODS: ORDERS 
AND CRYPTOGRAPHICAL APPLICATIONS 

SHUHONG GAO, JOACHIM VON ZUR GATHEN, AND DANIEL PANARIO 

ABSTRACT. Experimental results on the multiplicative orders of Gauss periods 
in finite fields are presented. These results indicate that Gauss periods have 
high order and are often primitive (self-dual) normal elements in finite fields. 
It is shown that Gauss periods can be exponentiated in quadratic time. An 
application is an efficient pseudorandom bit generator. 

1. INTRODUCTION 

Fq denotes a finite field with q elements. Let n and k be positive integers such 
that r = nk + 1 is a prime, not dividing q, and IC the unique subgroup of order k 
of the multiplicative group of Zr = Z/rZ. For any primitive rth root 3 of unity in 
Fqnk k the element 

a S 
aekZ 

is a Gauss period of type (n, k) over Fq. It is easy to see that a C Fqn. 
Adleman and Lenstra [1] and Mullin et al. [23] used Gauss periods to construct 

field extensions and normal bases with special properties over finite fields. A normal 
basis for Fqn over Fq is a basis of the form a, q . . 

1 generated by some 
a C Fqn. Any such a is called a normal element. 

A Gauss period of type (n, k) over Fq generates a normal basis for Fqn over Fq 
if and only if gcd(e, n) = 1, where e denotes the index of q modulo r = nk + 1 
(Wassermann [29, 30], Gao et al. [10]). Gao et al. [10] present a method for fast 
multiplication and division under the normal bases generated by Gauss periods; 
thus exponentiation in finite fields can be sped up. We refer to that paper and the 
books by Jungnickel [17] and Menezes et al. [21] for a discussion of the literature. 

Gauss periods of type (n, 2) over F2 also have other remarkable properties. Gao 
and Vanstone [12] proved that they can be exponentiated in 0(n 2) bit operations. 
This is faster than any known algorithm for exponentiation of an arbitrary element 
in F2n by a factor of loglog n. The orders of Gauss periods of type (n, 2) over F2 
were also computed for n < 1200. The experimental results in their paper show 
that Gauss periods have high multiplicative order, and in fact are often primitive 
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elements over F2. This is useful in cryptosystems where a fixed element needs to 
be raised to many large powers. 

Naturally, one can ask if the above properties hold for Gauss periods of type (n, k) 
over F2 with k > 2. In the next section, we prove that, for any fixed k and q, a 
Gauss period of type (n, k) over Fq can indeed be exponentiated in Q(nr2) operations 
in Fq. We computed the multiplicative orders of all Gauss periods of type (n, k) 
over F2 for n < 1200 and 3 < k < 20 that generate normal bases for F21l over F2 as 
far as the known factorizations of 2 n - 1 permit. Our experiments show that Gauss 
periods of type (n, k) for k > 3 also have high orders and are often primitive. This 
means that Gauss periods are often primitive normal elements. When k is even, the 
normal bases generated by Gauss periods of type (n, k) over F2 are self-dual. Gauss 
periods thus are often primitive self-dual normal elements as well. In Section 3, we 
summarize our experimental results, state some conjectures about primitive normal 
elements, and show how to construct a primitive element from an element with high 
order. The experimental data appears in the microfiche supplement at the end of 
this issue. Finally, we mention in Section 4 some cryptographical applications. In 
particular, we describe a pseudorandom bit generator based on exponentiation in 
F2m, and discuss its security and efficiency. 

Our work also contributes to the construction of primitive polynomials and prim- 
itive normal polynomials, since their irreducible polynomials are normal and prim- 
itive when Gauss periods are primitive. The related literature is mentioned at the 
end of Section 3. 

2. FAST EXPONENTIATION OF GAUSS PERIODS 

In this section we show that, for fixed k and q, a Gauss period of type (n, k) can 
be exponentiated in 0(n2) operations in Fq; see also Gao et al. [10]. 

A pair (n, k) is a Gauss pair over Fq if r = nk + 1 is a prime not dividing q and 
gcd(e,rn) = 1, where e is the index of q modulo r, i.e., e = nk/ordr(q). When q is 
understood, we simply say that (n, k) is a Gauss pair. It is always assumed that 
(n, k) is a Gauss pair in the sequel. 

In the notation of the introduction, IC is the unique subgroup of order k of Z4, 
and 

a,AZ 
where /3 is a primitive rth root of unity. Let 

1iC = qt1C = {aq' mod r a c K;} for 0 < i < n. 

Then Zx is the disjoint union of tCo, IC1, , i-I We write ai = a q for 0 < i < n. 
Then (Co0, C1,-... , Cn1) is a normal basis for Fqn over Fq. It is shown in Gao et 
al. [10] that 

ea ai=-6k?+ E tija- 
O< j<n 

where t =j (1 ?+ I) n ICj-, 1 = 1 if i = io and 0 otherwise, and io is such that 
-1 E KUi. Note that each a ?ai has at most k nonzero terms, and thus there are 
at most nk nonzero terms in total. We store all the nQnzero tij in a table, called 
the multiplication table of Gauss periods of type (n, k). 

Theorem 2.1. Let a be a Gauss period of type (n, k) over Fq and 0 < e < qn. 

Then ae can be computed in O(n2qk) operations in Fq, 
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Proof. We want to compute ae expressed in the normal basis (ao, a1,, , an-). 

We use a redundant representation of -y E Fqn, writing 

a=tE aia-)+ an, 
O<i<n 

where ao, *I* , anI, an C Fq. Thus -y is represented by an (n + 1)-tuple (ao, , 
anII an). Of course, this representation is not unique; we just want to compute 
any one of the representations. For example, the unit 1 can either be represented 
as (0,... , 0, 1) or (-1, ,-1, 0), since-1 = ZO<i<n ai. Our algorithm benefits 
from this flexibility. 

Thus -yq is the (n + 1)-tuple obtained from that of -y by shifting cyclically the 
first n coordinates to the right by one position (the last coordinate remains fixed). 
So the cost for computing a qth power is negligible. 

For any -y = (O<i<n aiai) + an E Fqn and 0 < j < n, 

cyy= ( = ai(aai j)q) + anaj- 
O<i<n 

Since aai is a sum of at most k terms and can be looked up from the multiplication 
table, aj'y can be computed in O(nk) operations in Fq. 

Now to compute ae, we use the q-ary representation e = Eo<j<f e-qi with 
0 < eJ < q for all j and ee ? 0. Then f < n, and 

II(j e II 
o<j<f o<j<e 

This suggests that we compute ae iteratively. Initially, set -y = 1. For j from 0 to 
f set -y := a>i-y. Then, at the end, we have -y = ae. We compute aej-y iteratively 
as a.>y for i from 1 to e3. This algorithm computes ae in 

o((Z ei>nk) O(oq(e)nk) 
( (<j<n) ) 

operations in Fq, where oq(e) is the sum of digits of e in q-ary representation. Now 
uq(e) < (q - 1)n < qn implies the claim. D 

Thus ae can be computed in 0(n2) operations in Fq, when the values of q and 
k are fixed. This is faster than any known algorithm for exponentiation of an 
arbitrary element. Furthermore, one needs only to store e, -y and the multiplication 
table, a total of O(nk) elements of Fq. 

Exponentiation of an arbitrary element in Fqn (with q bounded) can be per- 
formed with Q(n2 loglogn) operations in Fq by the currently fastest algorithm, 
with storage for O(n/ log 2 n) elements in Fqn (Shoup [28], Gao et al. [10]). 

Von zur Gathen and Pappalardi [13] proved under ERH that, for any fixed k 
and q, there are infinitely many values of n such that (n, k) is a Gauss pair over 
Fq, In fact, they determine a positive density for the primes nk + 1, where (n, k) is 
a Gauss pair, in the set of all primes. Thus, there are infinitely many fields Fqn in 
which Gauss periods can be exponentiated easily. 
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3. EXPERIMENTAL RESULTS 

In this section, we present experimental results which indicate that Gauss periods 
almost always have high order. When (n, k) is a Gauss pair over Fq, Gauss periods 
of type (n, k) are algebraic conjugates of each other, hence they have the same 
multiplicative order. That is, the order of a = EZaec 1a does not depend on 
the choice of the primitive r-th root 3 of unity. By the algorithm in the previous 
section, a can be exponentiated under the normal basis generated by a itself without 
knowing 3, one just needs to precompute the multiplication table for Gauss periods 
of type (n, k). We computed the multiplicative orders of a for all Gauss pairs (n, k) 
over F2 with 3 < k < 20 and 2 < n < 569, and also did the corresponding 
calculations for 569 < n < 1200 as far as current knowledge of the factors of 2n _ 1 
permits. The results are tabulated in the table of the microfiche supplement, where 
"Ind" denotes index, which equals 2n n-1 divided by the corresponding multiplicative 
order. An entry with a question mark "i?" in the "Ind" column means that the 
corresponding index was computed from the partial factorization of 2 n _ 1 known 
to the authors at the time of writing. Thus the true index is i times some of the 
unknown prime factors of 2n _ 1; we believe that these extra factors are unlikely 
to occur. 

Our experiments show that Gauss periods have the expected multiplicative prop7 
erties: they almost always have high multiplicative orders and are frequently prim- 
itive. More precisely, in the range 2 < n < 569 and 2 < k < 20 there are 1267 
Gauss pairs (n, k), all the corresponding Gauss periods have order > (2n -)/n 
except for 8 pairs, and 977 of them are primitive. In the range 569 < n < 1200 
and 2 < k < 20, there are 1151 Gauss pairs (n, k), and the corresponding Gauss 
periods have order > (2n - 1)//n except for 5 pairs, and 894 of them are primitive, 
provided that the corresponding index entries i? are the true indices. 

All the Gauss periods in the table generate normal bases over F2. When the 
index is 1, the corresponding basis is a primitive normal basis. Thus Gauss periods 
yield many primitive normal bases over IF2. Also, when k is even, the normal basis 
generated by a Gauss period of type (n, k) over F2 is self-dual (Gao et al. [10]). We 
see that Gauss periods generate many primitive self-dual normal bases as well. 

Gao and Vanstone [12] observe that if n and 2n + 1 are both primes, then 
Gauss periods of type (n, 2) are primitive elements in F2- for n < 1200. Our 
experimental data show that their observation still holds for general Gauss periods. 
It is formulated as follows. 

Conjecture 3.1. If n and nk + 1 are both primes and k < log2(n + 1), then Gauss 
periods of type (n, k) form a primitive normal basis for F2 " over F2. 

We note that normality is not a problem here. Since the order m of 2 modulo 
nk?+ is at least log2(nk+1) > log2(nr+1) > k, it follows that n divides m = nk/e 
and thus gcd(e, n) = 1. 

Wassermann [30] proves that for a given n there exists a Gauss pair (n, k) over 
F2 if and only if 8 t n. There are 61 values of n < 1200 with 8 t n for which there 
is no Gauss pair (n, k) with k < 20. For each of thes;e n, we list in the table the 
smallest Gauss pair (n, k) and the corresponding index (or index?). 

Our computations lead us to believe that for every n not divisible by 8 there is a 
Gauss pair (n, k) yielding a primitive Gauss period F2m over F2. As an experiment, 
we verified this for all n < 569. If there is no primitive Gauss period for k < 20, 
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then the last entry of k is the smallest k whose Gauss period is primitive and normal 
in F2m. The largest such k occurs in (490, 69). 

Conjecture 3.2. For any positive integer n not divisible by 8, there exists an 
integer k > 1 such that the Gauss period of type (n, k) is primitive normal in F2- 
over F2- 

Motivated by this work and the previous work of Gao and Vanstone [12], von 
zur Gathen and Shparlinski [14] prove that Gauss periods of type (n, 2) have order 
at least 2 2m-2 

Next, we show how to construct primitive elements from elements of high order. 
The constructed primitive elements will still be essentially as easy to exponentiate 
as Gauss periods. 

Theorem 3.3. Let a C F2- with index e. A primitive element can be constructed 
from a deterministically in time polynomial in e and n. 

Proof. The order of a is m = (2n - 1)/e. Write e = ele2, where gcd(e2,m) 1 
and every prime divisor of el divides m. Let /13 E F2- satisfy 

1e3 
a 
O 

and let 32 be a primitive e2th root of unity in F2m. Then /1 has order me,, and 
0102 has order me1e2 = 2n _ 1, as gcd(mel,e2) = 1. This means that 3102 iS 
primitive in F2m. Also, /1 and /2 can be constructed in time polynomial in e and 
n. OI 

Thus if the order of a is at least (2n - 1)/nm for a constant c, then a primitive 
element in F2m can be constructed in time polynomial no('). In the special case 
e = 2k _ 1, the equation xe -a can be written as x2 = ax, which corresponds to 
a system of linear equations over F2, and can be solved by any efficient algorithm 
for linear equations. Our experimental data shows that many Gauss periods have 
indices 3, 7, 15, etc, which are of the form 2k _ 1. Thus from our table of Gauss 
periods, it is easy to construct primitive elements if one really needs primitive 
elements instead of elements of high orders. In the table, we give for each n < 569 
and 8 {t n, the smallest k such that a Gauss period of type (n, k) has index at most 
n. One can see that for these n it is possible to find a reasonably small such k. 

Finally, we make some comments on the related work in the literature. As 
mentioned in the introduction, our work also contributes to the construction of 
primitive polynomials and primitive normal polynomials, since their irreducible 
polynomials are normal and primitive when Gauss periods are primitive. Hansen 
and Mullen [16] and Morgan and Mullen [22] give tables of primitive polynomials 
and primitive normal polynomials of degree m over Fp for all prime powers pm < 
1050 with p < 97. Zivkovic [35, 36] gives a more extensive table of primitive 
polynomials of degree m < 1200 (and a few values of m between 1200 and 5000) 
over F2 when the factorization of 2m - 1 is known. In their work, they search for 
sparse polynomials, i.e., those with the smallest number of nonzero terms. Such 
polynomials are useful in efficient implementation of feedback shift registers. Gao 
and Panario [11] provide a construction of infinite families of sparse irreducible 
polynomials. In the extreme case, there is much interest in constructing irreducible 
trinomials over F2. Zierler and Brillhart [33, 341 give a table of irreducible trinomials 
of degree < 1000. Blake et al. [51 extend this list to all irreducible trinomials of 
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degree < 2000 over IL2 (and a table for degree < 5000 is available from those 
authors). 

It is, however, not clear how primitive elements from sparse polynomials can 
be exponentiated faster than an arbitrary primitive element. The primitive poly- 
nomials from Gauss periods may not in general be sparse, but they do provide 
computational advantage in fast exponentiation as shown by Theorem 2.1. 

4. CRYPTOGRAPHICAL APPLICATIONS 

Let a C Fqn be a primitive element (or an element of high order, say at least 
(qn - 1)/nr for some constant c). Computing the exponentiation function that 
maps x C {0,... , - qn 1} to ax is easy, but computing its inverse function, i.e., 
computing x given ax, called the discrete logarithm problem, is believed to be 
hard in general. This one-wayness of exponentiation has found many applications 
in public-key cryptography: Diffie-Hellman key exchange (Diffie and Hellman [8]), 
password schemes (Lamport [18]), ElGamal cryptosystem (ElGamal [9]), cryptosys- 
tems over F2 (Agnew et al. [2], Agnew et al. [3]), smart cards (Beth [4], Schnorr 
[26, 27]), US Digital Signature Algorithm (NIST [24]), pseudorandom bit genera- 
tors (Blum and Micali [6], Long and Widgerson [20]). Pseudorandom bit generators 
based on discrete logarithms in finite fields are used by Zheng and Seberry [31, 32] 
and Lim and Lee [19] to construct cryptosystems that leak no partial information 
and are secure against adaptively chosen ciphertext attacks. In these applications, 
one needs a fixed element of high order and computes at for many random large 
integers t. For example, in a signature scheme, for each signature one needs to gen- 
erate a random integer t and compute at. Sometimes the computing power of the 
signature generating device is limited, e.g., in a smart card. So a has to be chosen 
such that exponentiation of a is easy. In practice, the currently popular choice for a 
is from elements in Fp . If the prime p has n bits, then computing at needs Q(nr3) bit 
operations using repeated square and multiply method, or Q(nr2log n loglog n) bit 
operations using FFT-based fast multiplication algorithms. However, if we choose 
a to be a Gauss period of type (n, k) in IF2- for a small k, then the cost of ex- 
ponentiating a is reduced to Q(nr2) bit operations, which is just the cost of one 
multiplication by the "classical" method. Our experimental results show that a 
almost always has high order and is often primitive. Our exponentiation algorithm 
is also easy to implement. Gauss periods are therefore highly attractive in these 
applications. 

In the following, we describe Blum and Micali's pseudorandom bit generator 
based on exponentiation in Fp, then we adapt it to the fields F2n and comment on 
its security and efficiency. 

A pseudorandom bit generator produces sequences of bits (0 or 1) that cannot 
be distinguished from truly random sequences of bits of equal length by any (prob- 
abilistic) polynomial time algorithm. Blum and Micali [6] presented the following 
pseudorandom bit generator. Let m > 1 be a fixed integer. Given n > 2, select an 
odd prime p of n bits, and a primitive root a modulo p. Pick a random integer ao 
(the seed) in the range 1 < ao < p - 1. Set 

ak+1 aak mod p for k > 0, 

and 

bk+1 = 1 if ak+1 > (p - 1)/2, and bk+1 0 otherwise. 
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Then {bk: 1 < k < n'm + rn} is a sequence of nm + m bits generated from the 
n-bit seed ao. Blum and Micali [6] proved that if the discrete logarithm problem 
in Fp is hard, then this much longer sequence of bits is pseudorandom. Blum and 
Micali's generator outputs only one bit at each iteration, i.e., each bit costs one 
exponentiation mod p. Long and Wigderson [20] extended this to output about 
log n bits at each iteration. 

We now adapt the above generator to the fields F2m. Under a fixed basis for 
F2m over F2, an element x C F2m is represented as a sequence of n bits (0 and 
1). We use x to denote the integer whose binary representation is the same as x. 
Let ae E IF2 be a primitive element (or an element of high order). Pick a random 
element xo E CF2m. Set 

Xk+1 = ak for k > 0, 
and let Zk+j be the least significant bit 

(1) Zk+1 = Xk+1 mod 2. 

Then {Zk 1 < k < nm + m} is a sequence of bits generated from the seed xo. We 
want to show that this sequence is pseudorandom. 

Let f be a one-way function, i.e, it is easy to compute but hard to invert. A 
Boolean predicate B (i.e., B(x) = 0 or 1) is said to be hard for f if an oracle for 
B(f((x)) allows one to invert f easily. Blum and Micali [6, Theorem 2] proved that 
if B is a hard predicate for a one-way function f, then the following sequence is 
pseudorandom: 

B(f(ao)), B(f2(ao)), B(f3(ao)), ,B(fk(ao)), 

where ao is randomly chosen. To show that our sequence is pseudorandom, it is 
enough to prove Theorem 4.1 below. For any E e F2m, the smallest positive integer 
x such that = ax is called the discrete logarithm of 3 with respect to a, denoted 
by log, 3. If no such x exists, we set (arbitrarily) log, 3 = 0. 

Theorem 4.1. Every bit of the discrete logarithm in F2?l is a hard predicate (for 
the exponentiation function). 

Proof. Let B(x) be the least significant bit of an integer x. We show how to 
compute discrete logarithms via an oracle for B (log, /3), which returns the least 
significant bit of the discrete logarithm of any 3 E F2m. Note that for any integer 
i, log, 232= 2' log, /3 mod 2' - 1. Suppose that 

n-I 

log, / Zak2k= (aoIa,,... ,an_l)2. 

k=0 

Then for i C N 
n-I n-I 

2 loge /3 E ak2 >3 ak-2 mod 2 - 1I 
k=0 k=0 

where the subscripts of a are computed modulo n, and 

log2= (an-i * ... , an-l: ao, . * an-i-12 

Therefore 
B(log 132 ) = an-i for 0 < i < n-i, 

and 
log, (B (log 0), B (log 02n-1 Bvl, 

o2 v v- 
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This means that log, 3 can be computed by n calls to the oracle. Since the bits 
can be shifted cyclically, log, 3 can also be computed by n calls to an oracle for 
any bit. Therefore every bit is a hard predicate. D 

Corollary 4.2. If the discrete logarithm problem in F2- is hard, then the bit se- 
quence z1, Z2, . ... defined in (1) is pseudorandom. 

We have assumed that the oracle is perfect, that is, it always gives correct 
answers. Blum and Micali [6] dealt with the more general case of nonperfect oracles 
(an oracle that may give wrong answers, but it gives correct answers sufficiently 
more frequently than incorrect ones). It seems likely that Theorem 4.1 still holds 
for nonperfect oracles. 

Our theorem says that every bit of the discrete logarithms is a hard predicate, 
that is, every bit is individually secure, provided the discrete logarithm is hard 
to compute. This is different from the discrete logarithms modulo an odd prime 
p, where its least significant bit is not secure while the most significant bit-is in- 
deed secure (Peralta [25]). It seems also possible to modify the proof in Long and 
Wigderson [20] to show that any 0 (log n) consecutive bits of the discrete logarithms 
in F2m are simultaneously secure. In this case, the modified pseudorandom bit gen- 
erator could output O(logn) bits per iteration. The discrete logarithm problem in 
IF2n seems easier than that in Fp, and one may need to pick a bigger field IF2n than 
for IFP to maintain the same level of security. 

In implementing our pseudorandom bit generator in F2m, one can choose a to 
be a Gauss period of type (n, k) for a small k. The cost of exponentiating a at 
each iteration is only Q(n2) bit operations. This is advantageous compared to the 
generator in Fp, where exponentiation needs Q(n2 log n loglog n) bit operations by 
using fast multiplication algorithms. 
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